300字范文,内容丰富有趣,生活中的好帮手!
300字范文 > 【风控模型】Logistic算法构建标准信用评分卡模型python代码案例

【风控模型】Logistic算法构建标准信用评分卡模型python代码案例

时间:2020-03-23 19:52:11

相关推荐

【风控模型】Logistic算法构建标准信用评分卡模型python代码案例

【博客地址】:/sunyaowu315

【博客大纲地址】:/sunyaowu315/article/details/82905347

数据集介绍:

本次案例分析所用的数据,是拍拍贷发起的一次与信贷申请审核工作相关的竞赛数据集。其中共有3份文件:

PPD_Training_Master_GBK_3_1_Training_Set.csv :信贷用户在拍拍贷上的申报信息和部分三方数据信息,以及需要预测的目标变量。PPD_LogInfo_3_1_Training_Set : 信贷客户的登录信息PPD_Userupdate_Info_3_1_Training_Set :部分客户的信息修改行为

建模工作就是从上述三个文件中对数据进行加工,提取特征并且建立合适的模型,对贷后表现做预测。

【Logistic原理】:/sunyaowu315/article/details/87866135

对数据分析、机器学习、数据科学、金融风控等感兴趣的小伙伴,需要数据集、代码、行业报告等各类学习资料,可添加qq群(资料共享群):102755159,也可添加微信wu805686220,加入微信讨论群,相互学习,共同成长。

主程序

import pandas as pdimport datetimeimport collectionsimport numpy as npimport numbersimport randomimport sysimport sys_path = r'C:\Users\A3\Desktop\LR_scorecard'sys.path.append(_path)import picklefrom itertools import combinationsfrom sklearn.linear_model import LinearRegressionfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import roc_curvefrom sklearn.metrics import roc_auc_scoreimport statsmodels.api as smfrom importlib import reloadfrom matplotlib import pyplot as pltreload(sys)#sys.setdefaultencoding( "utf-8")import scorecard_functions as sf#from scorecard_functions_V3 import *from sklearn.linear_model import LogisticRegressionCV# -*- coding: utf-8 -*-######################################## UDF: 自定义函数 ########################################### 对时间窗口,计算累计产比 ###def TimeWindowSelection(df, daysCol, time_windows):''':param df: the dataset containg variabel of days:param daysCol: the column of days:param time_windows: the list of time window:return:'''freq_tw = {}for tw in time_windows:freq = sum(df[daysCol].apply(lambda x: int(x<=tw)))freq_tw[tw] = freqreturn freq_twdef DeivdedByZero(nominator, denominator):'''当分母为0时,返回0;否则返回正常值'''if denominator == 0:return 0else:return nominator*1.0/denominator#对某些统一的字段进行统一def ChangeContent(x):y = x.upper()if y == '_MOBILEPHONE':y = '_PHONE'return ydef MissingCategorial(df,x):missing_vals = df[x].map(lambda x: int(x!=x))return sum(missing_vals)*1.0/df.shape[0]def MissingContinuous(df,x):missing_vals = df[x].map(lambda x: int(np.isnan(x)))return sum(missing_vals) * 1.0 / df.shape[0]def MakeupRandom(x, sampledList):if x==x:return xelse:randIndex = random.randint(0, len(sampledList)-1)return sampledList[randIndex]#############################################################Step 0: 数据分析的初始工作, 包括读取数据文件、检查用户Id的一致性等#############################################################folderOfData = 'C:/Users/A3/Desktop/scorecard/'data1 = pd.read_csv(folderOfData+'PPD_LogInfo_3_1_Training_Set.csv', header = 0)data2 = pd.read_csv(folderOfData+'PPD_Training_Master_GBK_3_1_Training_Set.csv', header = 0,encoding = 'gbk')data3 = pd.read_csv(folderOfData+'PPD_Userupdate_Info_3_1_Training_Set.csv', header = 0)############################################################################################## Step 1: 从PPD_LogInfo_3_1_Training_Set & PPD_Userupdate_Info_3_1_Training_Set数据中衍生特征############################################################################################### compare whether the four city variables matchdata2['city_match'] = data2.apply(lambda x: int(x.UserInfo_2 == x.UserInfo_4 == x.UserInfo_8 == x.UserInfo_20),axis = 1)del data2['UserInfo_2']del data2['UserInfo_4']del data2['UserInfo_8']del data2['UserInfo_20']### 提取申请日期,计算日期差,查看日期差的分布data1['logInfo'] = data1['LogInfo3'].map(lambda x: datetime.datetime.strptime(x,'%Y-%m-%d'))data1['Listinginfo'] = data1['Listinginfo1'].map(lambda x: datetime.datetime.strptime(x,'%Y-%m-%d'))data1['ListingGap'] = data1[['logInfo','Listinginfo']].apply(lambda x: (x[1]-x[0]).days,axis = 1)plt.hist(data1['ListingGap'],bins=200)plt.title('Days between login date and listing date')ListingGap2 = data1['ListingGap'].map(lambda x: min(x,365))plt.hist(ListingGap2,bins=200)timeWindows = TimeWindowSelection(data1, 'ListingGap', range(30,361,30))'''使用180天作为最大的时间窗口计算新特征所有可以使用的时间窗口可以有7 days, 30 days, 60 days, 90 days, 120 days, 150 days and 180 days.在每个时间窗口内,计算总的登录次数,不同的登录方式,以及每种登录方式的平均次数'''time_window = [7, 30, 60, 90, 120, 150, 180]var_list = ['LogInfo1','LogInfo2']data1GroupbyIdx = pd.DataFrame({'Idx':data1['Idx'].drop_duplicates()})for tw in time_window:data1['TruncatedLogInfo'] = data1['Listinginfo'].map(lambda x: x + datetime.timedelta(-tw))temp = data1.loc[data1['logInfo'] >= data1['TruncatedLogInfo']]for var in var_list:#count the frequences of LogInfo1 and LogInfo2count_stats = temp.groupby(['Idx'])[var].count().to_dict()data1GroupbyIdx[str(var)+'_'+str(tw)+'_count'] = data1GroupbyIdx['Idx'].map(lambda x: count_stats.get(x,0))# count the distinct value of LogInfo1 and LogInfo2Idx_UserupdateInfo1 = temp[['Idx', var]].drop_duplicates()uniq_stats = Idx_UserupdateInfo1.groupby(['Idx'])[var].count().to_dict()data1GroupbyIdx[str(var) + '_' + str(tw) + '_unique'] = data1GroupbyIdx['Idx'].map(lambda x: uniq_stats.get(x,0))# calculate the average count of each value in LogInfo1 and LogInfo2data1GroupbyIdx[str(var) + '_' + str(tw) + '_avg_count'] = data1GroupbyIdx[[str(var)+'_'+str(tw)+'_count',str(var) + '_' + str(tw) + '_unique']].\apply(lambda x: DeivdedByZero(x[0],x[1]), axis=1)data3['ListingInfo'] = data3['ListingInfo1'].map(lambda x: datetime.datetime.strptime(x,'%Y/%m/%d'))data3['UserupdateInfo'] = data3['UserupdateInfo2'].map(lambda x: datetime.datetime.strptime(x,'%Y/%m/%d'))data3['ListingGap'] = data3[['UserupdateInfo','ListingInfo']].apply(lambda x: (x[1]-x[0]).days,axis = 1)collections.Counter(data3['ListingGap'])hist_ListingGap = np.histogram(data3['ListingGap'])hist_ListingGap = pd.DataFrame({'Freq':hist_ListingGap[0],'gap':hist_ListingGap[1][1:]})hist_ListingGap['CumFreq'] = hist_ListingGap['Freq'].cumsum()hist_ListingGap['CumPercent'] = hist_ListingGap['CumFreq'].map(lambda x: x*1.0/hist_ListingGap.iloc[-1]['CumFreq'])'''对 QQ和qQ, Idnumber和idNumber,MOBILEPHONE和PHONE 进行统一在时间切片内,计算(1) 更新的频率(2) 每种更新对象的种类个数(3) 对重要信息如IDNUMBER,HASBUYCAR, MARRIAGESTATUSID, PHONE的更新'''data3['UserupdateInfo1'] = data3['UserupdateInfo1'].map(ChangeContent)data3GroupbyIdx = pd.DataFrame({'Idx':data3['Idx'].drop_duplicates()})time_window = [7, 30, 60, 90, 120, 150, 180]for tw in time_window:data3['TruncatedLogInfo'] = data3['ListingInfo'].map(lambda x: x + datetime.timedelta(-tw))temp = data3.loc[data3['UserupdateInfo'] >= data3['TruncatedLogInfo']]#frequency of updatingfreq_stats = temp.groupby(['Idx'])['UserupdateInfo1'].count().to_dict()data3GroupbyIdx['UserupdateInfo_'+str(tw)+'_freq'] = data3GroupbyIdx['Idx'].map(lambda x: freq_stats.get(x,0))# number of updated typesIdx_UserupdateInfo1 = temp[['Idx','UserupdateInfo1']].drop_duplicates()uniq_stats = Idx_UserupdateInfo1.groupby(['Idx'])['UserupdateInfo1'].count().to_dict()data3GroupbyIdx['UserupdateInfo_' + str(tw) + '_unique'] = data3GroupbyIdx['Idx'].map(lambda x: uniq_stats.get(x, x))#average count of each typedata3GroupbyIdx['UserupdateInfo_' + str(tw) + '_avg_count'] = data3GroupbyIdx[['UserupdateInfo_'+str(tw)+'_freq', 'UserupdateInfo_' + str(tw) + '_unique']]. \apply(lambda x: x[0] * 1.0 / x[1], axis=1)#whether the applicant changed items like IDNUMBER,HASBUYCAR, MARRIAGESTATUSID, PHONEIdx_UserupdateInfo1['UserupdateInfo1'] = Idx_UserupdateInfo1['UserupdateInfo1'].map(lambda x: [x])Idx_UserupdateInfo1_V2 = Idx_UserupdateInfo1.groupby(['Idx'])['UserupdateInfo1'].sum()for item in ['_IDNUMBER','_HASBUYCAR','_MARRIAGESTATUSID','_PHONE']:item_dict = Idx_UserupdateInfo1_V2.map(lambda x: int(item in x)).to_dict()data3GroupbyIdx['UserupdateInfo_' + str(tw) + str(item)] = data3GroupbyIdx['Idx'].map(lambda x: item_dict.get(x, x))# Combine the above features with raw features in PPD_Training_Master_GBK_3_1_Training_SetallData = pd.concat([data2.set_index('Idx'), data3GroupbyIdx.set_index('Idx'), data1GroupbyIdx.set_index('Idx')],axis= 1)allData.to_csv(folderOfData+'allData_0.csv',encoding = 'gbk')######################################## Step 2: 对类别型变量和数值型变量进行补缺#######################################allData = pd.read_csv(folderOfData+'allData_0.csv',header = 0,encoding = 'gbk')allFeatures = list(allData.columns)allFeatures.remove('target')if 'Idx' in allFeatures:allFeatures.remove('Idx')allFeatures.remove('ListingInfo')#检查是否有常数型变量,并且检查是类别型还是数值型变量numerical_var = []for col in allFeatures:if len(set(allData[col])) == 1:print('delete {} from the dataset because it is a constant'.format(col))del allData[col]allFeatures.remove(col)else:uniq_valid_vals = [i for i in allData[col] if i == i]uniq_valid_vals = list(set(uniq_valid_vals))if len(uniq_valid_vals) >= 10 and isinstance(uniq_valid_vals[0], numbers.Real):numerical_var.append(col)categorical_var = [i for i in allFeatures if i not in numerical_var]#检查变量的最多值的占比情况,以及每个变量中占比最大的值records_count = allData.shape[0]col_most_values,col_large_value = {},{}for col in allFeatures:value_count = allData[col].groupby(allData[col]).count()col_most_values[col] = max(value_count)/records_countlarge_value = value_count[value_count== max(value_count)].index[0]col_large_value[col] = large_valuecol_most_values_df = pd.DataFrame.from_dict(col_most_values, orient = 'index')col_most_values_df.columns = ['max percent']col_most_values_df = col_most_values_df.sort_values(by = 'max percent', ascending = False)pcnt = list(col_most_values_df[:500]['max percent'])vars = list(col_most_values_df[:500].index)plt.bar(range(len(pcnt)), height = pcnt)plt.title('Largest Percentage of Single Value in Each Variable')#计算多数值占比超过90%的字段中,少数值的坏样本率是否会显著高于多数值large_percent_cols = list(col_most_values_df[col_most_values_df['max percent']>=0.9].index)bad_rate_diff = {}for col in large_percent_cols:large_value = col_large_value[col]temp = allData[[col,'target']]temp[col] = temp.apply(lambda x: int(x[col]==large_value),axis=1)bad_rate = temp.groupby(col).mean()if bad_rate.iloc[0]['target'] == 0:bad_rate_diff[col] = 0continuebad_rate_diff[col] = np.log(bad_rate.iloc[0]['target']/bad_rate.iloc[1]['target'])bad_rate_diff_sorted = sorted(bad_rate_diff.items(),key=lambda x: x[1], reverse=True)bad_rate_diff_sorted_values = [x[1] for x in bad_rate_diff_sorted]plt.bar(x = range(len(bad_rate_diff_sorted_values)), height = bad_rate_diff_sorted_values)#由于所有的少数值的坏样本率并没有显著高于多数值,意味着这些变量可以直接剔除for col in large_percent_cols:if col in numerical_var:numerical_var.remove(col)else:categorical_var.remove(col)del allData[col]'''对类别型变量,如果缺失超过80%, 就删除,否则当成特殊的状态'''missing_pcnt_threshould_1 = 0.8for col in categorical_var:missingRate = MissingCategorial(allData,col)print('{0} has missing rate as {1}'.format(col,missingRate))if missingRate > missing_pcnt_threshould_1:categorical_var.remove(col)del allData[col]if 0 < missingRate < missing_pcnt_threshould_1:uniq_valid_vals = [i for i in allData[col] if i == i]uniq_valid_vals = list(set(uniq_valid_vals))if isinstance(uniq_valid_vals[0], numbers.Real):missing_position = allData.loc[allData[col] != allData[col]][col].indexnot_missing_sample = [-1]*len(missing_position)allData.loc[missing_position, col] = not_missing_sampleelse:# In this way we convert NaN to NAN, which is a string instead of np.nanallData[col] = allData[col].map(lambda x: str(x).upper())allData_bk = allData.copy()'''检查数值型变量'''missing_pcnt_threshould_2 = 0.8deleted_var = []for col in numerical_var:missingRate = MissingContinuous(allData, col)print('{0} has missing rate as {1}'.format(col, missingRate))if missingRate > missing_pcnt_threshould_2:deleted_var.append(col)print('we delete variable {} because of its high missing rate'.format(col))else:if missingRate > 0:not_missing = allData.loc[allData[col] == allData[col]][col]#makeuped = allData[col].map(lambda x: MakeupRandom(x, list(not_missing)))missing_position = allData.loc[allData[col] != allData[col]][col].indexnot_missing_sample = random.sample(list(not_missing), len(missing_position))allData.loc[missing_position,col] = not_missing_sample#del allData[col]#allData[col] = makeupedmissingRate2 = MissingContinuous(allData, col)print('missing rate after making up is:{}'.format(str(missingRate2)))if deleted_var != []:for col in deleted_var:numerical_var.remove(col)del allData[col]allData.to_csv(folderOfData+'allData_1.csv', header=True,encoding='gbk', columns = allData.columns, index=False)allData = pd.read_csv(folderOfData+'allData_1.csv', header=0,encoding='gbk')#################################### Step 3: 基于卡方分箱法对变量进行分箱####################################'''对不同类型的变量,分箱的处理是不同的:(1)数值型变量可直接分箱(2)取值个数较多的类别型变量,需要用bad rate做编码转换成数值型变量,再分箱(3)取值个数较少的类别型变量不需要分箱,但是要检查是否每个类别都有好坏样本。如果有类别只有好或坏,需要合并'''#for each categorical variable, if it has distinct values more than 5, we use the ChiMerge to merge ittrainData = pd.read_csv(folderOfData+'allData_1.csv',header = 0, encoding='gbk')#trainData = pd.read_csv(folderOfData+'allData_1.csv',header = 0, encoding='gbk',dtype=object)allFeatures = list(trainData.columns)allFeatures.remove('ListingInfo')allFeatures.remove('target')#allFeatures.remove('Idx')#将特征区分为数值型和类别型numerical_var = []for var in allFeatures:uniq_vals = list(set(trainData[var]))if np.nan in uniq_vals:uniq_vals.remove( np.nan)if len(uniq_vals) >= 10 and isinstance(uniq_vals[0],numbers.Real):numerical_var.append(var)categorical_var = [i for i in allFeatures if i not in numerical_var]for col in categorical_var:#for Chinese character, upper() is not validif col not in ['UserInfo_7','UserInfo_9','UserInfo_19']:trainData[col] = trainData[col].map(lambda x: str(x).upper())'''对于类别型变量,按照以下方式处理1,如果变量的取值个数超过5,计算bad rate进行编码2,除此之外,其他任何类别型变量如果有某个取值中,对应的样本全部是坏样本或者是好样本,进行合并。'''deleted_features = [] #将处理过的变量删除,防止对后面建模的干扰encoded_features = {} #将bad rate编码方式保存下来,在以后的测试和生产环境中需要使用merged_features = {} #将类别型变量合并方案保留下来var_IV = {} #save the IV values for binned features #将IV值保留和WOE值var_WOE = {}for col in categorical_var:print('we are processing {}'.format(col))# =============================================================================#if len(set(trainData[col]))>1000:# continue# =============================================================================if len(set(trainData[col]))>5:print('{} is encoded with bad rate'.format(col))col0 = str(col)+'_encoding'#(1), 计算坏样本率并进行编码encoding_result = sf.BadRateEncoding(trainData, col, 'target')trainData[col0], br_encoding = encoding_result['encoding'],encoding_result['bad_rate']#(2), 将(1)中的编码后的变量也加入数值型变量列表中,为后面的卡方分箱做准备numerical_var.append(col0)#(3), 保存编码结果encoded_features[col] = [col0, br_encoding]#(4), 删除原始值deleted_features.append(col)else:bad_bin = trainData.groupby([col])['target'].sum()#对于类别数少于5个,但是出现0坏样本的特征需要做处理if min(bad_bin) == 0:print('{} has 0 bad sample!'.format(col))col1 = str(col) + '_mergeByBadRate'#(1), 找出最优合并方式,使得每一箱同时包含好坏样本mergeBin = sf.MergeBad0(trainData, col, 'target')#(2), 依照(1)的结果对值进行合并trainData[col1] = trainData[col].map(mergeBin)maxPcnt = sf.MaximumBinPcnt(trainData, col1)#如果合并后导致有箱占比超过90%,就删除。if maxPcnt > 0.9:print('{} is deleted because of large percentage of single bin'.format(col))deleted_features.append(col)categorical_var.remove(col)del trainData[col]continue#(3) 如果合并后的新的变量满足要求,就保留下来merged_features[col] = [col1, mergeBin]WOE_IV = sf.CalcWOE(trainData, col1, 'target')var_WOE[col1] = WOE_IV['WOE']var_IV[col1] = WOE_IV['IV']#del trainData[col]deleted_features.append(col)else:WOE_IV = sf.CalcWOE(trainData, col, 'target')var_WOE[col] = WOE_IV['WOE']var_IV[col] = WOE_IV['IV']'''对于连续型变量,处理方式如下:1,利用卡方分箱法将变量分成5个箱2,检查坏样本率的单调性,如果发现单调性不满足,就进行合并,直到满足单调性'''var_cutoff = {}for col in numerical_var:print("{} is in processing".format(col))col1 = str(col) + '_Bin'#(1),用卡方分箱法进行分箱,并且保存每一个分割的端点。例如端点=[10,20,30]表示将变量分为x<10,10<x<20,20<x<30和x>30.#特别地,缺失值-1不参与分箱if -1 in set(trainData[col]):special_attribute = [-1]else:special_attribute = []cutOffPoints = sf.ChiMerge(trainData, col, 'target',special_attribute=special_attribute)var_cutoff[col] = cutOffPointstrainData[col1] = trainData[col].map(lambda x: sf.AssignBin(x, cutOffPoints,special_attribute=special_attribute))#(2), check whether the bad rate is monotoneBRM = sf.BadRateMonotone(trainData, col1, 'target',special_attribute=special_attribute)if not BRM:if special_attribute == []:bin_merged = sf.Monotone_Merge(trainData, 'target', col1)removed_index = []for bin in bin_merged:if len(bin)>1:indices = [int(b.replace('Bin ','')) for b in bin]removed_index = removed_index+indices[0:-1]removed_point = [cutOffPoints[k] for k in removed_index]for p in removed_point:cutOffPoints.remove(p)var_cutoff[col] = cutOffPointstrainData[col1] = trainData[col].map(lambda x: sf.AssignBin(x, cutOffPoints, special_attribute=special_attribute))else:cutOffPoints2 = [i for i in cutOffPoints if i not in special_attribute]temp = trainData.loc[~trainData[col].isin(special_attribute)]bin_merged = sf.Monotone_Merge(temp, 'target', col1)removed_index = []for bin in bin_merged:if len(bin) > 1:indices = [int(b.replace('Bin ', '')) for b in bin]removed_index = removed_index + indices[0:-1]removed_point = [cutOffPoints2[k] for k in removed_index]for p in removed_point:cutOffPoints2.remove(p)cutOffPoints2 = cutOffPoints2 + special_attributevar_cutoff[col] = cutOffPoints2trainData[col1] = trainData[col].map(lambda x: sf.AssignBin(x, cutOffPoints2, special_attribute=special_attribute))#(3), 分箱后再次检查是否有单一的值占比超过90%。如果有,删除该变量maxPcnt = sf.MaximumBinPcnt(trainData, col1)if maxPcnt > 0.9:# del trainData[col1]deleted_features.append(col)numerical_var.remove(col)print('we delete {} because the maximum bin occupies more than 90%'.format(col))continueWOE_IV = sf.CalcWOE(trainData, col1, 'target')var_IV[col] = WOE_IV['IV']var_WOE[col] = WOE_IV['WOE']#del trainData[col]trainData.to_csv(folderOfData+'allData_2.csv', header=True,encoding='gbk', columns = trainData.columns, index=False)with open(folderOfData+'var_WOE.pkl',"wb") as f:f.write(pickle.dumps(var_WOE))with open(folderOfData+'var_IV.pkl',"wb") as f:f.write(pickle.dumps(var_IV))with open(folderOfData+'var_cutoff.pkl',"wb") as f:f.write(pickle.dumps(var_cutoff))with open(folderOfData+'merged_features.pkl',"wb") as f:f.write(pickle.dumps(merged_features))######################################### Step 4: WOE编码后的单变量分析与多变量分析#########################################trainData = pd.read_csv(folderOfData+'allData_2.csv', header=0, encoding='gbk')with open(folderOfData+'var_WOE.pkl',"rb") as f:var_WOE = pickle.load(f)with open(folderOfData+'var_IV.pkl',"rb") as f:var_IV = pickle.load(f)with open(folderOfData+'var_cutoff.pkl',"rb") as f:var_cutoff = pickle.load(f)with open(folderOfData+'merged_features.pkl',"rb") as f:merged_features = pickle.load(f)#将一些看起来像数值变量实际上是类别变量的字段转换成字符num2str = ['SocialNetwork_13','SocialNetwork_12','UserInfo_6','UserInfo_5','UserInfo_10','UserInfo_17']for col in num2str:trainData[col] = trainData[col].map(lambda x: str(x))for col in var_WOE.keys():print(col)col2 = str(col)+"_WOE"if col in var_cutoff.keys():cutOffPoints = var_cutoff[col]special_attribute = []if -1 in cutOffPoints:special_attribute = [-1]binValue = trainData[col].map(lambda x: sf.AssignBin(x, cutOffPoints,special_attribute=special_attribute))trainData[col2] = binValue.map(lambda x: var_WOE[col][x])else:print('********************************************************************************************')print(col)if -1 in set(trainData[col]):trainData[col2] = trainData[col].map(lambda x: var_WOE[col][str(x*1.0)])else:trainData[col2] = trainData[col].map(lambda x: var_WOE[col][x])trainData.to_csv(folderOfData+'allData_3.csv', header=True,encoding='gbk', columns = trainData.columns, index=False)### (i) 选择IV高于阈值的变量trainData = pd.read_csv(folderOfData+'allData_3.csv', header=0,encoding='gbk')all_IV = list(var_IV.values())all_IV = sorted(all_IV, reverse=True)plt.bar(x=range(len(all_IV)), height = all_IV)iv_threshould = 0.02varByIV = [k for k, v in var_IV.items() if v > iv_threshould]### (ii) 检查WOE编码后的变量的两两线性相关性var_IV_selected = {k:var_IV[k] for k in varByIV}var_IV_sorted = sorted(var_IV_selected.items(), key=lambda d:d[1], reverse = True)var_IV_sorted = [i[0] for i in var_IV_sorted]removed_var = []roh_thresould = 0.6for i in range(len(var_IV_sorted)-1):if var_IV_sorted[i] not in removed_var:x1 = var_IV_sorted[i]+"_WOE"for j in range(i+1,len(var_IV_sorted)):if var_IV_sorted[j] not in removed_var:x2 = var_IV_sorted[j] + "_WOE"roh = np.corrcoef([trainData[x1], trainData[x2]])[0, 1]if abs(roh) >= roh_thresould:print('the correlation coeffient between {0} and {1} is {2}'.format(x1, x2, str(roh)))if var_IV[var_IV_sorted[i]] > var_IV[var_IV_sorted[j]]:removed_var.append(var_IV_sorted[j])else:removed_var.append(var_IV_sorted[i])var_IV_sortet_2 = [i for i in var_IV_sorted if i not in removed_var]### (iii)检查是否有变量与其他所有变量的VIF > 10for i in range(len(var_IV_sortet_2)):x0 = trainData[var_IV_sortet_2[i]+'_WOE']x0 = np.array(x0)X_Col = [k+'_WOE' for k in var_IV_sortet_2 if k != var_IV_sortet_2[i]]X = trainData[X_Col]X = np.matrix(X)regr = LinearRegression()clr= regr.fit(X, x0)x_pred = clr.predict(X)R2 = 1 - ((x_pred - x0) ** 2).sum() / ((x0 - x0.mean()) ** 2).sum()vif = 1/(1-R2)if vif > 10:print("Warning: the vif for {0} is {1}".format(var_IV_sortet_2[i], vif))########################## Step 5: 应用逻辑回归模型##########################multi_analysis = [i+'_WOE' for i in var_IV_sortet_2]y = trainData['target']X = trainData[multi_analysis].copy()X['intercept'] = [1]*X.shape[0]LR = sm.Logit(y, X).fit()summary = LR.summary2()pvals = LR.pvalues.to_dict()params = LR.params.to_dict()#发现有变量不显著,因此需要单独检验显著性varLargeP = {k: v for k,v in pvals.items() if v >= 0.1}varLargeP = sorted(varLargeP.items(), key=lambda d:d[1], reverse = True)varLargeP = [i[0] for i in varLargeP]p_value_list = {}for var in varLargeP:X_temp = trainData[var].copy().to_frame()X_temp['intercept'] = [1] * X_temp.shape[0]LR = sm.Logit(y, X_temp).fit()p_value_list[var] = LR.pvalues[var]for k,v in p_value_list.items():print("{0} has p-value of {1} in univariate regression".format(k,v))#发现有变量的系数为正,因此需要单独检验正确性varPositive = [k for k,v in params.items() if v >= 0]coef_list = {}for var in varPositive:X_temp = trainData[var].copy().to_frame()X_temp['intercept'] = [1] * X_temp.shape[0]LR = sm.Logit(y, X_temp).fit()coef_list[var] = LR.params[var]for k,v in coef_list.items():print("{0} has coefficient of {1} in univariate regression".format(k,v))selected_var = [multi_analysis[0]]for var in multi_analysis[1:]:try_vars = selected_var+[var]X_temp = trainData[try_vars].copy()X_temp['intercept'] = [1] * X_temp.shape[0]LR = sm.Logit(y, X_temp).fit()#summary = LR.summary2()pvals, params = LR.pvalues, LR.paramsdel params['intercept']if max(pvals)<0.1 and max(params)<0:selected_var.append(var)LR.summary2()y_pred = LR.predict(X_temp)y_result = pd.DataFrame({'y_pred':y_pred, 'y_real':list(trainData['target'])})sf.KS(y_result,'y_pred','y_real')roc_auc_score(trainData['target'], y_pred)################# Step 6: 尺度化#################scores = sf.Prob2Score(y_pred,200,100)plt.hist(scores,bins=100)

功能函数

import numpy as npimport pandas as pddef SplitData(df, col, numOfSplit, special_attribute=[]):''':param df: 按照col排序后的数据集:param col: 待分箱的变量:param numOfSplit: 切分的组别数:param special_attribute: 在切分数据集的时候,某些特殊值需要排除在外:return: 在原数据集上增加一列,把原始细粒度的col重新划分成粗粒度的值,便于分箱中的合并处理'''df2 = df.copy()if special_attribute != []:df2 = df.loc[~df[col].isin(special_attribute)]N = df2.shape[0]n = int(N/numOfSplit)splitPointIndex = [i*n for i in range(1,numOfSplit)]rawValues = sorted(list(df2[col]))splitPoint = [rawValues[i] for i in splitPointIndex]splitPoint = sorted(list(set(splitPoint)))return splitPointdef MaximumBinPcnt(df,col):''':return: 数据集df中,变量col的分布占比'''N = df.shape[0]total = df.groupby([col])[col].count()pcnt = total*1.0/Nreturn max(pcnt)def Chi2(df, total_col, bad_col):''':param df: 包含全部样本总计与坏样本总计的数据框:param total_col: 全部样本的个数:param bad_col: 坏样本的个数:return: 卡方值'''df2 = df.copy()# 求出df中,总体的坏样本率和好样本率badRate = sum(df2[bad_col])*1.0/sum(df2[total_col])# 当全部样本只有好或者坏样本时,卡方值为0if badRate in [0,1]:return 0df2['good'] = df2.apply(lambda x: x[total_col] - x[bad_col], axis = 1)goodRate = sum(df2['good']) * 1.0 / sum(df2[total_col])# 期望坏(好)样本个数=全部样本个数*平均坏(好)样本占比df2['badExpected'] = df[total_col].apply(lambda x: x*badRate)df2['goodExpected'] = df[total_col].apply(lambda x: x * goodRate)badCombined = zip(df2['badExpected'], df2[bad_col])goodCombined = zip(df2['goodExpected'], df2['good'])badChi = [(i[0]-i[1])**2/i[0] for i in badCombined]goodChi = [(i[0] - i[1]) ** 2 / i[0] for i in goodCombined]chi2 = sum(badChi) + sum(goodChi)return chi2def BinBadRate(df, col, target, grantRateIndicator=0):''':param df: 需要计算好坏比率的数据集:param col: 需要计算好坏比率的特征:param target: 好坏标签:param grantRateIndicator: 1返回总体的坏样本率,0不返回:return: 每箱的坏样本率,以及总体的坏样本率(当grantRateIndicator==1时)'''total = df.groupby([col])[target].count()total = pd.DataFrame({'total': total})bad = df.groupby([col])[target].sum()bad = pd.DataFrame({'bad': bad})regroup = total.merge(bad, left_index=True, right_index=True, how='left')regroup.reset_index(level=0, inplace=True)regroup['bad_rate'] = regroup.apply(lambda x: x.bad * 1.0 / x.total, axis=1)dicts = dict(zip(regroup[col],regroup['bad_rate']))if grantRateIndicator==0:return (dicts, regroup)N = sum(regroup['total'])B = sum(regroup['bad'])overallRate = B * 1.0 / Nreturn (dicts, regroup, overallRate)def AssignGroup(x, bin):''':return: 数值x在区间映射下的结果。例如,x=2,bin=[0,3,5], 由于0<x<3,x映射成3'''N = len(bin)if x<=min(bin):return min(bin)elif x>max(bin):return 10e10else:for i in range(N-1):if bin[i] < x <= bin[i+1]:return bin[i+1]def ChiMerge(df, col, target, max_interval=5,special_attribute=[],minBinPcnt=0):''':param df: 包含目标变量与分箱属性的数据框:param col: 需要分箱的属性:param target: 目标变量,取值0或1:param max_interval: 最大分箱数。如果原始属性的取值个数低于该参数,不执行这段函数:param special_attribute: 不参与分箱的属性取值:param minBinPcnt:最小箱的占比,默认为0:return: 分箱结果'''colLevels = sorted(list(set(df[col])))N_distinct = len(colLevels)if N_distinct <= max_interval: #如果原始属性的取值个数低于max_interval,不执行这段函数print("The number of original levels for {} is less than or equal to max intervals".format(col))return colLevels[:-1]else:if len(special_attribute)>=1:df1 = df.loc[df[col].isin(special_attribute)]df2 = df.loc[~df[col].isin(special_attribute)]else:df2 = df.copy()N_distinct = len(list(set(df2[col])))# 步骤一: 通过col对数据集进行分组,求出每组的总样本数与坏样本数if N_distinct > 100:split_x = SplitData(df2, col, 100)df2['temp'] = df2[col].map(lambda x: AssignGroup(x, split_x))else:df2['temp'] = df2[col]# 总体bad rate将被用来计算expected bad count(binBadRate, regroup, overallRate) = BinBadRate(df2, 'temp', target, grantRateIndicator=1)# 首先,每个单独的属性值将被分为单独的一组# 对属性值进行排序,然后两两组别进行合并colLevels = sorted(list(set(df2['temp'])))groupIntervals = [[i] for i in colLevels]# 步骤二:建立循环,不断合并最优的相邻两个组别,直到:# 1,最终分裂出来的分箱数<=预设的最大分箱数# 2,每箱的占比不低于预设值(可选)# 3,每箱同时包含好坏样本# 如果有特殊属性,那么最终分裂出来的分箱数=预设的最大分箱数-特殊属性的个数split_intervals = max_interval - len(special_attribute)while (len(groupIntervals) > split_intervals): # 终止条件: 当前分箱数=预设的分箱数# 每次循环时, 计算合并相邻组别后的卡方值。具有最小卡方值的合并方案,是最优方案chisqList = []for k in range(len(groupIntervals)-1):temp_group = groupIntervals[k] + groupIntervals[k+1]df2b = regroup.loc[regroup['temp'].isin(temp_group)]chisq = Chi2(df2b, 'total', 'bad')chisqList.append(chisq)best_comnbined = chisqList.index(min(chisqList))groupIntervals[best_comnbined] = groupIntervals[best_comnbined] + groupIntervals[best_comnbined+1]# 当将最优的相邻的两个变量合并在一起后,需要从原来的列表中将其移除。例如,将[3,4,5] 与[6,7]合并成[3,4,5,6,7]后,需要将[3,4,5] 与[6,7]移除,保留[3,4,5,6,7]groupIntervals.remove(groupIntervals[best_comnbined+1])groupIntervals = [sorted(i) for i in groupIntervals]cutOffPoints = [max(i) for i in groupIntervals[:-1]]# 检查是否有箱没有好或者坏样本。如果有,需要跟相邻的箱进行合并,直到每箱同时包含好坏样本groupedvalues = df2['temp'].apply(lambda x: AssignBin(x, cutOffPoints))df2['temp_Bin'] = groupedvalues(binBadRate,regroup) = BinBadRate(df2, 'temp_Bin', target)[minBadRate, maxBadRate] = [min(binBadRate.values()),max(binBadRate.values())]while minBadRate ==0 or maxBadRate == 1:# 找出全部为好/坏样本的箱indexForBad01 = regroup[regroup['bad_rate'].isin([0,1])].temp_Bin.tolist()bin=indexForBad01[0]# 如果是最后一箱,则需要和上一个箱进行合并,也就意味着分裂点cutOffPoints中的最后一个需要移除if bin == max(regroup.temp_Bin):cutOffPoints = cutOffPoints[:-1]# 如果是第一箱,则需要和下一个箱进行合并,也就意味着分裂点cutOffPoints中的第一个需要移除elif bin == min(regroup.temp_Bin):cutOffPoints = cutOffPoints[1:]# 如果是中间的某一箱,则需要和前后中的一个箱进行合并,依据是较小的卡方值else:# 和前一箱进行合并,并且计算卡方值currentIndex = list(regroup.temp_Bin).index(bin)prevIndex = list(regroup.temp_Bin)[currentIndex - 1]df3 = df2.loc[df2['temp_Bin'].isin([prevIndex, bin])](binBadRate, df2b) = BinBadRate(df3, 'temp_Bin', target)chisq1 = Chi2(df2b, 'total', 'bad')# 和后一箱进行合并,并且计算卡方值laterIndex = list(regroup.temp_Bin)[currentIndex + 1]df3b = df2.loc[df2['temp_Bin'].isin([laterIndex, bin])](binBadRate, df2b) = BinBadRate(df3b, 'temp_Bin', target)chisq2 = Chi2(df2b, 'total', 'bad')if chisq1 < chisq2:cutOffPoints.remove(cutOffPoints[currentIndex - 1])else:cutOffPoints.remove(cutOffPoints[currentIndex])# 完成合并之后,需要再次计算新的分箱准则下,每箱是否同时包含好坏样本groupedvalues = df2['temp'].apply(lambda x: AssignBin(x, cutOffPoints))df2['temp_Bin'] = groupedvalues(binBadRate, regroup) = BinBadRate(df2, 'temp_Bin', target)[minBadRate, maxBadRate] = [min(binBadRate.values()), max(binBadRate.values())]# 需要检查分箱后的最小占比if minBinPcnt > 0:groupedvalues = df2['temp'].apply(lambda x: AssignBin(x, cutOffPoints))df2['temp_Bin'] = groupedvaluesvalueCounts = groupedvalues.value_counts().to_frame()N = sum(valueCounts['temp'])valueCounts['pcnt'] = valueCounts['temp'].apply(lambda x: x * 1.0 / N)valueCounts = valueCounts.sort_index()minPcnt = min(valueCounts['pcnt'])while minPcnt < minBinPcnt and len(cutOffPoints) > 2:# 找出占比最小的箱indexForMinPcnt = valueCounts[valueCounts['pcnt'] == minPcnt].index.tolist()[0]# 如果占比最小的箱是最后一箱,则需要和上一个箱进行合并,也就意味着分裂点cutOffPoints中的最后一个需要移除if indexForMinPcnt == max(valueCounts.index):cutOffPoints = cutOffPoints[:-1]# 如果占比最小的箱是第一箱,则需要和下一个箱进行合并,也就意味着分裂点cutOffPoints中的第一个需要移除elif indexForMinPcnt == min(valueCounts.index):cutOffPoints = cutOffPoints[1:]# 如果占比最小的箱是中间的某一箱,则需要和前后中的一个箱进行合并,依据是较小的卡方值else:# 和前一箱进行合并,并且计算卡方值currentIndex = list(valueCounts.index).index(indexForMinPcnt)prevIndex = list(valueCounts.index)[currentIndex - 1]df3 = df2.loc[df2['temp_Bin'].isin([prevIndex, indexForMinPcnt])](binBadRate, df2b) = BinBadRate(df3, 'temp_Bin', target)chisq1 = Chi2(df2b, 'total', 'bad')# 和后一箱进行合并,并且计算卡方值laterIndex = list(valueCounts.index)[currentIndex + 1]df3b = df2.loc[df2['temp_Bin'].isin([laterIndex, indexForMinPcnt])](binBadRate, df2b) = BinBadRate(df3b, 'temp_Bin', target)chisq2 = Chi2(df2b, 'total', 'bad')if chisq1 < chisq2:cutOffPoints.remove(cutOffPoints[currentIndex - 1])else:cutOffPoints.remove(cutOffPoints[currentIndex])groupedvalues = df2['temp'].apply(lambda x: AssignBin(x, cutOffPoints))df2['temp_Bin'] = groupedvaluesvalueCounts = groupedvalues.value_counts().to_frame()valueCounts['pcnt'] = valueCounts['temp'].apply(lambda x: x * 1.0 / N)valueCounts = valueCounts.sort_index()minPcnt = min(valueCounts['pcnt'])cutOffPoints = special_attribute + cutOffPointsreturn cutOffPointsdef BadRateEncoding(df, col, target):''':return: 在数据集df中,用坏样本率给col进行编码。target表示坏样本标签'''regroup = BinBadRate(df, col, target, grantRateIndicator=0)[1]br_dict = regroup[[col,'bad_rate']].set_index([col]).to_dict(orient='index')for k, v in br_dict.items():br_dict[k] = v['bad_rate']badRateEnconding = df[col].map(lambda x: br_dict[x])return {'encoding':badRateEnconding, 'bad_rate':br_dict}def AssignBin(x, cutOffPoints,special_attribute=[]):''':param x: 某个变量的某个取值:param cutOffPoints: 上述变量的分箱结果,用切分点表示:param special_attribute: 不参与分箱的特殊取值:return: 分箱后的对应的第几个箱,从0开始例如, cutOffPoints = [10,20,30], 对于 x = 7, 返回 Bin 0;对于x=23,返回Bin 2; 对于x = 35, return Bin 3。对于特殊值,返回的序列数前加"-"'''cutOffPoints2 = [i for i in cutOffPoints if i not in special_attribute]numBin = len(cutOffPoints2)if x in special_attribute:i = special_attribute.index(x)+1return 'Bin {}'.format(0-i)if x<=cutOffPoints2[0]:return 'Bin 0'elif x > cutOffPoints2[-1]:return 'Bin {}'.format(numBin)else:for i in range(0,numBin):if cutOffPoints2[i] < x <= cutOffPoints2[i+1]:return 'Bin {}'.format(i+1)def CalcWOE(df, col, target):''':param df: 包含需要计算WOE的变量和目标变量:param col: 需要计算WOE、IV的变量,必须是分箱后的变量,或者不需要分箱的类别型变量:param target: 目标变量,0、1表示好、坏:return: 返回WOE和IV'''total = df.groupby([col])[target].count()total = pd.DataFrame({'total': total})bad = df.groupby([col])[target].sum()bad = pd.DataFrame({'bad': bad})regroup = total.merge(bad, left_index=True, right_index=True, how='left')regroup.reset_index(level=0, inplace=True)N = sum(regroup['total'])B = sum(regroup['bad'])regroup['good'] = regroup['total'] - regroup['bad']G = N - Bregroup['bad_pcnt'] = regroup['bad'].map(lambda x: x*1.0/B)regroup['good_pcnt'] = regroup['good'].map(lambda x: x * 1.0 / G)regroup['WOE'] = regroup.apply(lambda x: np.log(x.good_pcnt*1.0/x.bad_pcnt),axis = 1)WOE_dict = regroup[[col,'WOE']].set_index(col).to_dict(orient='index')for k, v in WOE_dict.items():WOE_dict[k] = v['WOE']IV = regroup.apply(lambda x: (x.good_pcnt-x.bad_pcnt)*np.log(x.good_pcnt*1.0/x.bad_pcnt),axis = 1)IV = sum(IV)return {"WOE": WOE_dict, 'IV':IV}def FeatureMonotone(x):''':return: 返回序列x中有几个元素不满足单调性,以及这些元素的位置。例如,x=[1,3,2,5], 元素3比前后两个元素都大,不满足单调性;元素2比前后两个元素都小,也不满足单调性。故返回的不满足单调性的元素个数为2,位置为1和2.'''monotone = [x[i]<x[i+1] and x[i] < x[i-1] or x[i]>x[i+1] and x[i] > x[i-1] for i in range(1,len(x)-1)]index_of_nonmonotone = [i+1 for i in range(len(monotone)) if monotone[i]]return {'count_of_nonmonotone':monotone.count(True), 'index_of_nonmonotone':index_of_nonmonotone}## 判断某变量的坏样本率是否单调def BadRateMonotone(df, sortByVar, target,special_attribute = []):''':param df: 包含检验坏样本率的变量,和目标变量:param sortByVar: 需要检验坏样本率的变量:param target: 目标变量,0、1表示好、坏:param special_attribute: 不参与检验的特殊值:return: 坏样本率单调与否'''df2 = df.loc[~df[sortByVar].isin(special_attribute)]if len(set(df2[sortByVar])) <= 2:return Trueregroup = BinBadRate(df2, sortByVar, target)[1]combined = zip(regroup['total'],regroup['bad'])badRate = [x[1]*1.0/x[0] for x in combined]badRateNotMonotone = FeatureMonotone(badRate)['count_of_nonmonotone']if badRateNotMonotone > 0:return Falseelse:return Truedef MergeBad0(df,col,target, direction='bad'):''':param df: 包含检验0%或者100%坏样本率:param col: 分箱后的变量或者类别型变量。检验其中是否有一组或者多组没有坏样本或者没有好样本。如果是,则需要进行合并:param target: 目标变量,0、1表示好、坏:return: 合并方案,使得每个组里同时包含好坏样本'''regroup = BinBadRate(df, col, target)[1]if direction == 'bad':# 如果是合并0坏样本率的组,则跟最小的非0坏样本率的组进行合并regroup = regroup.sort_values(by = 'bad_rate')else:# 如果是合并0好样本率的组,则跟最小的非0好样本率的组进行合并regroup = regroup.sort_values(by='bad_rate',ascending=False)regroup.index = range(regroup.shape[0])col_regroup = [[i] for i in regroup[col]]del_index = []for i in range(regroup.shape[0]-1):col_regroup[i+1] = col_regroup[i] + col_regroup[i+1]del_index.append(i)if direction == 'bad':if regroup['bad_rate'][i+1] > 0:breakelse:if regroup['bad_rate'][i+1] < 1:breakcol_regroup2 = [col_regroup[i] for i in range(len(col_regroup)) if i not in del_index]newGroup = {}for i in range(len(col_regroup2)):for g2 in col_regroup2[i]:newGroup[g2] = 'Bin '+str(i)return newGroupdef Monotone_Merge(df, target, col):''':return:将数据集df中,不满足坏样本率单调性的变量col进行合并,使得合并后的新的变量中,坏样本率单调,输出合并方案。例如,col=[Bin 0, Bin 1, Bin 2, Bin 3, Bin 4]是不满足坏样本率单调性的。合并后的col是:[Bin 0&Bin 1, Bin 2, Bin 3, Bin 4].合并只能在相邻的箱中进行。迭代地寻找最优合并方案。每一步迭代时,都尝试将所有非单调的箱进行合并,每一次尝试的合并都是跟前后箱进行合并再做比较'''def MergeMatrix(m, i,j,k):''':param m: 需要合并行的矩阵:param i,j: 合并第i和j行:param k: 删除第k行:return: 合并后的矩阵'''m[i, :] = m[i, :] + m[j, :]m = np.delete(m, k, axis=0)return mdef Merge_adjacent_Rows(i, bad_by_bin_current, bins_list_current, not_monotone_count_current):''':param i: 需要将第i行与前、后的行分别进行合并,比较哪种合并方案最佳。判断准则是,合并后非单调性程度减轻,且更加均匀:param bad_by_bin_current:合并前的分箱矩阵,包括每一箱的样本个数、坏样本个数和坏样本率:param bins_list_current: 合并前的分箱方案:param not_monotone_count_current:合并前的非单调性元素个数:return:分箱后的分箱矩阵、分箱方案、非单调性元素个数和衡量均匀性的指标balance'''i_prev = i - 1i_next = i + 1bins_list = bins_list_current.copy()bad_by_bin = bad_by_bin_current.copy()not_monotone_count = not_monotone_count_current#合并方案a:将第i箱与前一箱进行合并bad_by_bin2a = MergeMatrix(bad_by_bin.copy(), i_prev, i, i)bad_by_bin2a[i_prev, -1] = bad_by_bin2a[i_prev, -2] / bad_by_bin2a[i_prev, -3]not_monotone_count2a = FeatureMonotone(bad_by_bin2a[:, -1])['count_of_nonmonotone']# 合并方案b:将第i行与后一行进行合并bad_by_bin2b = MergeMatrix(bad_by_bin.copy(), i, i_next, i_next)bad_by_bin2b[i, -1] = bad_by_bin2b[i, -2] / bad_by_bin2b[i, -3]not_monotone_count2b = FeatureMonotone(bad_by_bin2b[:, -1])['count_of_nonmonotone']balance = ((bad_by_bin[:, 1] / N).T * (bad_by_bin[:, 1] / N))[0, 0]balance_a = ((bad_by_bin2a[:, 1] / N).T * (bad_by_bin2a[:, 1] / N))[0, 0]balance_b = ((bad_by_bin2b[:, 1] / N).T * (bad_by_bin2b[:, 1] / N))[0, 0]#满足下述2种情况时返回方案a:(1)方案a能减轻非单调性而方案b不能;(2)方案a和b都能减轻非单调性,但是方案a的样本均匀性优于方案bif not_monotone_count2a < not_monotone_count_current and not_monotone_count2b >= not_monotone_count_current or \not_monotone_count2a < not_monotone_count_current and not_monotone_count2b < not_monotone_count_current and balance_a < balance_b:bins_list[i_prev] = bins_list[i_prev] + bins_list[i]bins_list.remove(bins_list[i])bad_by_bin = bad_by_bin2anot_monotone_count = not_monotone_count2abalance = balance_a# 同样地,满足下述2种情况时返回方案b:(1)方案b能减轻非单调性而方案a不能;(2)方案a和b都能减轻非单调性,但是方案b的样本均匀性优于方案aelif not_monotone_count2a >= not_monotone_count_current and not_monotone_count2b < not_monotone_count_current or \not_monotone_count2a < not_monotone_count_current and not_monotone_count2b < not_monotone_count_current and balance_a > balance_b:bins_list[i] = bins_list[i] + bins_list[i_next]bins_list.remove(bins_list[i_next])bad_by_bin = bad_by_bin2bnot_monotone_count = not_monotone_count2bbalance = balance_b#如果方案a和b都不能减轻非单调性,返回均匀性更优的合并方案else:if balance_a< balance_b:bins_list[i] = bins_list[i] + bins_list[i_next]bins_list.remove(bins_list[i_next])bad_by_bin = bad_by_bin2bnot_monotone_count = not_monotone_count2bbalance = balance_belse:bins_list[i] = bins_list[i] + bins_list[i_next]bins_list.remove(bins_list[i_next])bad_by_bin = bad_by_bin2bnot_monotone_count = not_monotone_count2bbalance = balance_breturn {'bins_list': bins_list, 'bad_by_bin': bad_by_bin, 'not_monotone_count': not_monotone_count,'balance': balance}N = df.shape[0][badrate_bin, bad_by_bin] = BinBadRate(df, col, target)bins = list(bad_by_bin[col])bins_list = [[i] for i in bins]badRate = sorted(badrate_bin.items(), key=lambda x: x[0])badRate = [i[1] for i in badRate]not_monotone_count, not_monotone_position = FeatureMonotone(badRate)['count_of_nonmonotone'], FeatureMonotone(badRate)['index_of_nonmonotone']#迭代地寻找最优合并方案,终止条件是:当前的坏样本率已经单调,或者当前只有2箱while (not_monotone_count > 0 and len(bins_list)>2):#当非单调的箱的个数超过1个时,每一次迭代中都尝试每一个箱的最优合并方案all_possible_merging = []for i in not_monotone_position:merge_adjacent_rows = Merge_adjacent_Rows(i, np.mat(bad_by_bin), bins_list, not_monotone_count)all_possible_merging.append(merge_adjacent_rows)balance_list = [i['balance'] for i in all_possible_merging]not_monotone_count_new = [i['not_monotone_count'] for i in all_possible_merging]#如果所有的合并方案都不能减轻当前的非单调性,就选择更加均匀的合并方案if min(not_monotone_count_new) >= not_monotone_count:best_merging_position = balance_list.index(min(balance_list))#如果有多个合并方案都能减轻当前的非单调性,也选择更加均匀的合并方案else:better_merging_index = [i for i in range(len(not_monotone_count_new)) if not_monotone_count_new[i] < not_monotone_count]better_balance = [balance_list[i] for i in better_merging_index]best_balance_index = better_balance.index(min(better_balance))best_merging_position = better_merging_index[best_balance_index]bins_list = all_possible_merging[best_merging_position]['bins_list']bad_by_bin = all_possible_merging[best_merging_position]['bad_by_bin']not_monotone_count = all_possible_merging[best_merging_position]['not_monotone_count']not_monotone_position = FeatureMonotone(bad_by_bin[:, 3])['index_of_nonmonotone']return bins_listdef Prob2Score(prob, basePoint, PDO):#将概率转化成分数且为正整数y = np.log(prob/(1-prob))return (basePoint+PDO/np.log(2)*(-y)).map(lambda x: int(x))### 计算KS值def KS(df, score, target):''':param df: 包含目标变量与预测值的数据集:param score: 得分或者概率:param target: 目标变量:return: KS值'''total = df.groupby([score])[target].count()bad = df.groupby([score])[target].sum()all = pd.DataFrame({'total':total, 'bad':bad})all['good'] = all['total'] - all['bad']all[score] = all.indexall = all.sort_values(by=score,ascending=False)all.index = range(len(all))all['badCumRate'] = all['bad'].cumsum() / all['bad'].sum()all['goodCumRate'] = all['good'].cumsum() / all['good'].sum()KS = all.apply(lambda x: x.badCumRate - x.goodCumRate, axis=1)return max(KS)

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。