300字范文,内容丰富有趣,生活中的好帮手!
300字范文 > 【数据结构】克鲁斯卡尔(Kruskal)算法 —PK— 普里姆(Prim)算法

【数据结构】克鲁斯卡尔(Kruskal)算法 —PK— 普里姆(Prim)算法

时间:2020-12-19 23:33:54

相关推荐

【数据结构】克鲁斯卡尔(Kruskal)算法 —PK— 普里姆(Prim)算法

目录

一、克鲁斯卡尔(Kruskal)算法

二、普里姆(Prim)算法

三、两个算法对比

求图的最小生成树的典型算法:

克鲁斯卡尔(Kruskal)算法

普里姆(Prim)算法

注:考虑问题的出发点相同:为使生成树上边的权值之和达到最小,则应使生成树中每一条边的权值尽可能的小。

一、克鲁斯卡尔(Kruskal)算法

1)概述

先构造一个只含n个顶点的子图SG,然后从权值最小的边开始,若它的添加不使SG中产生回路【不产生回路】,则在SG上加上这条边,如此重复,直至加上n-1条边为止。

2)算法分析

设图G=(V, E) 是一个具有n个顶点的连通无向图,T=(V, TE)是图G的最小生成树。

V是T的顶点集

TE是T的边集

构建最小生成树的步骤:

T的初始化状态 T = (V, 空 ) ,即最小生成树T是图G的生成零图。

将图G中的边按照权值从小到大的顺序排序

依次选取每条边,若选取的边未使生成树T形成回路,则加入TE中,否则舍弃。直至TE中包含n-1条边为止

例:

3)性能分析

构建最小生成树时,尽可能选择权值最小的边,但并不是每一条权值最小的边都必然可选,有可能构成回路。

最小生成树不是唯一的,因为同一时候可能有多重选择。

算法的时间复杂度:O(elge) ,即克鲁斯卡尔算法的执行时间主要取决于图的边数

该算法适用于针对==稀疏图==的操作。

二、普里姆(Prim)算法

1)概述

取图中任意一个顶点v作为生成树的根,之后往生成树上添加新的顶点w

在添加顶点w和已经在生成树上的顶点v之间必定存在一条边,并且该边的权值在所有连通顶点v和w之间的边中取值最小

之后继续往生成树上添加顶点,直至生成树上含有n-1个顶点为止。

2)算法分析

例:从a顶点出发

补充概念:

两个顶点之间的距离:指将顶点邻接到的关联边的权值

记为:|u,v|

顶点到顶点集合之间的距离:指顶点到顶点集合中所有顶点之间的距离中的最小值。

记为:|u, V| = min |u,v|

两个顶点集合之间的距离:指顶点集合到顶点集合中所有顶点之间的距离中的最小值。

记为:|U, V| = min |u, V|

3)步骤分析

在生成树的构造过程中,图中n个顶点分属两个集合已落在生成树上的顶点集合U尚未落在生成树上的顶级集合V-U,则应在所有连通U中顶点和V-U中的顶点的边中选取权值最小的边

4)代码实现

程序最后运行结果:

辅助数组:

算法:

public class MiniSpanTree_PRIM {// 内部类辅助记录从顶点U到V-U的代价最小的边private class CloseEdge {Object adjVex;int lowCost;public CloseEdge(Object adjVex, int lowCost) {this.adjVex = adjVex;//顶点this.lowCost = lowCost;//两个顶点之间最下的权值,}}// 用普里姆算法从第u个顶点出发构造网G的最小生成树T,返回由生成树边组成的二维数组public Object[][] PRIM(MGraph G, Object u) throws Exception {// 用于记录最小生成树的顶点,例如:tree[0][0]="v0",tree[0][1]="v2"Object[][] tree = new Object[G.getVexNum() - 1][2];int count = 0;// 初始化数据CloseEdge[] closeEdge = new CloseEdge[G.getVexNum()];int k = G.locateVex(u);//当前节点在for (int j = 0; j < G.getVexNum(); j++)// 辅助数组初始化if (j != k)closeEdge[j] = new CloseEdge(u, G.getArcs()[k][j]);// 当最小权值为0时,表示当前节点已经在树中closeEdge[k] = new CloseEdge(u, 0);// 初始,U={u}for (int i = 1; i < G.getVexNum(); i++) {// 选择其余G.vexnum - 1个顶点k = getMinMum(closeEdge);// 求出T的下一个结点:第k个顶点tree[count][0] = closeEdge[k].adjVex;// 生成树的边放入数组tree[count][1] = G.getVexs()[k];//count++;closeEdge[k].lowCost = 0;// 第k个顶点并入U集for (int j = 0; j < G.getVexNum(); j++)//新顶点并入U后重新选择最小边if (G.getArcs()[k][j] < closeEdge[j].lowCost)closeEdge[j] = new CloseEdge(G.getVex(k), G.getArcs()[k][j]);}return tree;}//在closeEdge中选出lowCost最小且不为0的顶点private int getMinMum(CloseEdge[] closeEdge) {int min = Integer.MAX_VALUE;int v = -1;for (int i = 0; i < closeEdge.length; i++)if (closeEdge[i].lowCost != 0 && closeEdge[i].lowCost < min){min = closeEdge[i].lowCost;v = i;}return v;}}

测试类:

public class Example6_4 {public final static int INFINITY = Integer.MAX_VALUE;public static void main(String[] args) throws Exception {Object vexs[] = { "v0", "v1", "v2", "v3", "v4", "v5" };// 各顶点之间边的关系int[][] arcs = { { 0, 7, 1, 5, INFINITY, INFINITY },{ 7, 0, 6, INFINITY, 3, INFINITY }, { 1, 6, 0, 7, 6, 4 },{ 5, INFINITY, 7, 0, INFINITY, 2 },{ INFINITY, 3, 6, INFINITY, 0, 7 },{ INFINITY, INFINITY, 4, 2, 7, 0 } };MGraph G = new MGraph(GraphKind.UDG, 6, 10, vexs, arcs);Object[][] T = new MiniSpanTree_PRIM().PRIM(G, "v1");for (int i = 0; i < T.length; i++)System.out.println(T[i][0] + " - " + T[i][1]);}}// 开始顶点v1 调试结果:// v1 - v4// v1 - v2// v2 - v0// v2 - v5// v5 - v3// 开始顶点v0 调试结果://v0 - v2//v2 - v5//v5 - v3//v2 - v1//v1 - v4

5)性能分析

普利姆算法的时间复杂度为:O(n2),执行时间主要取决于图的顶点数,与边数无关。

该算法适用于==稠密图==的操作。

三、两个算法对比

写到最后

四季轮换,已经数不清凋零了多少, 愿我们往后能向心而行,一路招摇胜!

🐋你的支持认可是我创作的动力

💟创作不易,不妨点赞💚评论❤️收藏💙一下

😘感谢大佬们的支持,欢迎各位前来不吝赐教

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。